"Advanced Pulsed Electric Fields in Agro-Industrial By-Product Valorization:

EFFOŜT

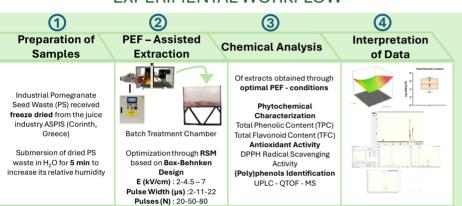
Unlocking the Phenolic's Recovery from Pomegranate Seeds"

Ioannis Dimitros^a, <u>Fotios Lytras</u>^b, Matthew Xuereb^b, Georgios Psakis^{b,c}, Frederick Lia^{b,c} Ruben Gatt^b, Georgios Katsaros^d, Vasilis Valdramidis^a, Marilena Dasenaki^a

⊚ EXCEL4MED €

^a Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15772, Greece

^b Metamaterials Unit, Faculty of Science, University of Malta, MSD 2080 Msida, Malta


^cInstitute of Applied Sciences (IAS), The Malta College of Arts, Science and Technology (MCAST), PLA 9032 Paola, Malta

^d Institute of Technology of Agricultural Products, ELGO-DEMETER, Athens, 14123, Greece

INTRODUCTION

Pulsed Electric Fields (PEF) is a **non-thermal** and **eco-friendly** food processing technology that can be used for enhancing the **extractability of compounds** from various food matrices. This is achieved by **increasing mass transfer** of bioactive compounds (BCs) from the plant cells through electroporation.

EXPERIMENTAL WORKFLOW

OBJECTIVES

- → Optimization of **polyphenol extraction** from dried pomegranate seeds (PSs) utilizing PEF
- ** Systematic assessment of Electric Field
 Strength (E, kV/cm), Pulse Width (PW, μs), and
 Pulse Number (PN, N) impact on the Total
 Phenolic Content (TPC, mg GAE/g PS) and Total
 Specific Energy (Wτ, kJ/kg) (extraction responses)
- Evaluation of the phytochemical composition and antioxidant activity of the obtained extracts
- Identification and profiling of (poly)phenolic compounds using UHPLC-QTOF-MS
- Development of an **eco-friendly alternative** to conventional extraction methods

OPTIMIZATION OF PEF - ASSISTED EXTRACTION

Regression Analysis

TPC is negatively affected by E and PW individually, but their combined effect (E*PW) is positively affected

This suggests a **synergistic effect** at moderate-to-high combinations of both factors

Figure 1: 3D Plots illustrating the effect of electric field strength (E, kV/cm) and pulse width (PW, µs) on TPC (mg GAE/g PS) during PEF pretreatment, whereas (a): PN = 20, (b): PN = 80

Goal: TPC (mg GAE/g PS) Ur(kJ/kg) Processing Variables as estimated by the model (E, kV/cm): 5.394 Optimum (PW, µs): 2 **Parameters** (PW, µs): 80 Values Responses Predicted Actual TPC (mg GAE/g PS) 4.92 ± 0.34 5.01 ± 1.57 3.54 ± 0.41 W_T (kJ/kg) 2.66 ± 0.21

Optimization

CHEMICAL ANALYSIS

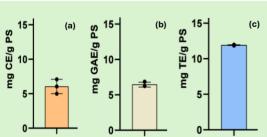


Figure 2: Phytochemical content [(a):TPC, (b): TFC] and (c): antioxidant capacity of PS extract obtained by optimal PEF conditions [(E, kV/cm): 5.394, (PW, µs): 2, (PW, µs): 80]

Flavonoids (28.26%)

Non – Flavonoids (71.74%)

Figure 3. Distribution of polyphenolic compounds identified in pomegranate seed extracts by UHPLC-QTOF-MS, classified into flavonoid (28.26%) and non-flavonoid (71.74%) groups

Identification of
15 (poly)phenolic
compounds
across various
chemical classes
through UHPLCQTOF-MS

Phenolic acids
Stilbenes
Tyrosols
Flavan-3-ols
Flavonols
Flavanons
Dihydrochalcone

CONCLUSIONS

- The process provides an eco-friendly and energy-efficient alternative to conventional solvent-based extraction methods, supporting sustainable valorization of agro-industrial side streams.
 - UHPLC-QTOF-MS analysis confirmed the compositional richness and bioactive potential of the obtained extracts.
- PEF optimized and resulted in the highest extraction efficiency, maximizing TPC while minimizing W_T from PSs.

REFERENCES

- 1. Lampakis D, Skenderidis P, Leontopoulos S. Processes. 2021 27:9(2):236.
- 2. Fomo G, Madzimbamuto TN, Ojumu TV. Sustainability. 2020 28;12(13):5244.

ACKNOWLEDGMENTS

This project is funded by the European Union under Horizon Europe (project 101087147)

